Climbing Fiber Signaling and Cerebellar Gain Control

نویسندگان

  • Gen Ohtsuki
  • Claire Piochon
  • Christian Hansel
چکیده

The physiology of climbing fiber signals in cerebellar Purkinje cells has been studied since the early days of electrophysiology. Both the climbing fiber-evoked complex spike and the role of climbing fiber activity in the induction of long-term depression (LTD) at parallel fiber-Purkinje cell synapses have become hallmark features of cerebellar physiology. However, the key role of climbing fiber signaling in cerebellar motor learning has been challenged by recent reports of forms of synaptic and non-synaptic plasticity in the cerebellar cortex that do not involve climbing fiber activity, but might well play a role in cerebellar learning. Moreover, cerebellar LTD does not seem to strictly require climbing fiber activity. These observations make it necessary to re-evaluate the role of climbing fiber signaling in cerebellar function. Here, we argue that climbing fiber signaling is about adjusting relative probabilities for the induction of LTD and long-term potentiation (LTP) at parallel fiber synapses. Complex spike-associated, dendritic calcium transients control postsynaptic LTD and LTP induction. High calcium transients, provided by complex spike activity, do not only favor postsynaptic LTD induction, but simultaneously trigger retrograde cannabinoid signaling, which blocks the induction of presynaptic LTP. Plasticity of the climbing fiber input itself provides additional means to fine-tune complex spike associated calcium signaling and thus to adjust the gain of heterosynaptic climbing fiber control. In addition to dendritic calcium transients, climbing fiber activity leads to the release of the neuropeptide corticotropin-releasing factor (CRF), which facilitates LTD induction at both parallel fiber and climbing fiber synapses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-synaptic signaling from cerebellar climbing fibers modulates Golgi cell activity

Golgi cells are the principal inhibitory neurons at the input stage of the cerebellum, providing feedforward and feedback inhibition through mossy fiber and parallel fiber synapses. In vivo studies have shown that Golgi cell activity is regulated by climbing fiber stimulation, yet there is little functional or anatomical evidence for synapses between climbing fibers and Golgi cells. Here, we sh...

متن کامل

A Computational Mechanism for Unified Gain and Timing Control in the Cerebellum

Precise gain and timing control is the goal of cerebellar motor learning. Because the basic neural circuitry of the cerebellum is homogeneous throughout the cerebellar cortex, a single computational mechanism may be used for simultaneous gain and timing control. Although many computational models of the cerebellum have been proposed for either gain or timing control, few models have aimed to un...

متن کامل

Bidirectional Parallel Fiber Plasticity in the Cerebellum under Climbing Fiber Control

Cerebellar parallel fiber (PF)-Purkinje cell (PC) synapses can undergo postsynaptically expressed long-term depression (LTD) or long-term potentiation (LTP) depending on whether or not the climbing fiber (CF) input is coactivated during tetanization. Here, we show that modifications of the postsynaptic calcium load using the calcium chelator BAPTA or photolytic calcium uncaging result in a reve...

متن کامل

Gating of neural error signals during motor learning

Cerebellar climbing fiber activity encodes performance errors during many motor learning tasks, but the role of these error signals in learning has been controversial. We compared two motor learning paradigms that elicited equally robust putative error signals in the same climbing fibers: learned increases and decreases in the gain of the vestibulo-ocular reflex (VOR). During VOR-increase train...

متن کامل

Activity-Dependent Gating of Calcium Spikes by A-type K+ Channels Controls Climbing Fiber Signaling in Purkinje Cell Dendrites

In cerebellar Purkinje cell dendrites, heterosynaptic calcium signaling induced by the proximal climbing fiber (CF) input controls plasticity at distal parallel fiber (PF) synapses. The substrate and regulation of this long-range dendritic calcium signaling are poorly understood. Using high-speed calcium imaging, we examine the role of active dendritic conductances. Under basal conditions, CF s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2009